Cluster chemistry

LXXVI. * A new C_{2} complex from reactions of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ with pyridine. X-Ray structure of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}$

Chris J. Adams, Michael I. Bruce *
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

Brian W. Skelton and Allan H. White
Department of Chemistry, University of Western Australia, Nedlands, Western Australia 6009 (Australia)
(Received July 9, 1991)

Abstract

The reaction between $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}(1)$ and pyridine results in the formation of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}(5)$ which has been fully characterised by an X-ray structure determination. The cluster core consists of an Ru_{4} butterfly metallated at a wingtip. A C_{2} ligand, formed by cleavage of the $\mathrm{P}-\mathrm{C}(s p)$ bond in 1 , is attached to all metal atoms, although one of the carbons has only a weak interaction with the hinge atoms. The overall $\mathrm{C}_{2} \mathrm{Ru}_{5}$ geometry is a distorted capped trigonal bipyramid, an $\mathrm{Ru}-\mathrm{C}$ edge of which is bridged by the fifth Ru atom.

Introduction

One of our objectives in developing the chemistry of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)(\mu-$ $\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ (1) has been to synthesise complexes containing the cluster-bonded C_{2} ligand, with a view to determining the reactivity and possible synthetic utility of this species. To date, we have becn successful in making three such clusters, namely $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{12}$ (2) [2] and $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{SMe}_{2}\right)_{2}(\mu-$ $\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{n}(n=12$ (3), 11 (4)) [3]. This paper reports the preparation and characterisation of a further example, obtained from the reaction between 1 and pyridine.

[^0]
Results and discussion

The reaction between $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ and pyridine was carried out in benzene at $90^{\circ} \mathrm{C}$ for 4 h . Preparative TLC enabled the isolation of black $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}(5)$, together with $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{CCH}\left(\mathrm{PPh}_{2}\right)\right\}(\mu-$ $\left.\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}(6)$ and $\mathrm{Ru}_{6}\left(\mu-\mathrm{C}_{2} \mathrm{H}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mu-\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{12}$ (7). The latter two complexes will be fully described elsewhere [4]. The molecular structure of 5 was established by an X-ray study and is shown in Fig. 1; Table 1 collects some significant bond parameters.

The metal core consists of a somewhat flattened Ru_{4} butterfly (dihedral $\left.32.58(4)^{\circ}\right)$ to one wing-tip of which is attached the fifth Ru atom $[\mathrm{Ru}(4)-\mathrm{Ru}(5)$ $2.9357(5) \AA]$. The $\mathrm{Ru}-\mathrm{Ru}$ bonds range between 2.7184 and $2.9357(5) \AA$, the extremes being the hinge (shorter) and the $R u(4)-R u(5)$ separation. The latter corresponds to an $\mathrm{Ru}(5) \rightarrow \mathrm{Ru}(4)$ donor bond, $\mathrm{Ru}(5)$ achieving a formal 18-electron count from 2CO, 2 py , the $\mu-\mathrm{PPh}_{2}$ ligand (1e) and $\mathrm{C}(1)(1 \mathrm{e})$. The PPh_{2}-bridged $R u(3)-R u(4)$ vector is the same length as the non-bridged $R u(1)-R u(2)$ separation; there are no obvious reasons for the differences between these bonds and the $R u(1)-R u(4)$ and $R u(2)-R u(3)$ bonds.

Two adjacent $\mathrm{Ru}-\mathrm{Ru}$ vectors are bridged asymmetrically by the PPh_{2} groups $[\mathrm{Ru}(3)-\mathrm{P}(1) 2.302(1), \mathrm{Ru}(4)-\mathrm{P}(1) 2.242(1), \mathrm{Ru}(4)-\mathrm{P}(2) 2.249(1), \mathrm{Ru}(5)-\mathrm{P}(2) 2.367(1)$ \AA A], while ten CO ligands are attached to the four Ru atoms forming the butterfly; one of these is semi-bridging $\mathrm{Ru}(1)-\mathrm{Ru}(4)$ [$\mathrm{Ru}(1)-\mathrm{C}(13) 1.909(4), \mathrm{Ru}(4)-\mathrm{C}(13)$ $\left.2.672(5) \AA, R u(1)-C(13)-O(13) 163.7(4)^{\circ}\right]$. The fifth Ru atom is coordinated to

(1)

(3)

(2)

(4)

Fig. 1. ORTEP plot of a molecule of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}$ (5), showing atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.

(5)

Table 1
Selected bond distances (\AA) and angles (deg) for $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}(5)$

Distances			
Ru(1)-Ru(2)	$2.8418(5)$	Ru(5)-N(1)	$2.211(3)$
$R u(1)-R u(3)$	$2.7184(6)$	$\mathrm{Ru}(5)-\mathrm{N}(2)$	$2.195(3)$
Ru(1)-Ru(4)	2.8850(6)	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.309(4)$
Ru(2)-Ru(3)	$2.8112(5)$	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$2.210(4)$
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.8425(5)$	$\mathrm{Ru}(2)-\mathrm{C}(2)$	1.955(4)
$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	$2.9357(5)$	$\mathrm{Ru}(3)-\mathrm{C}(1)$	$2.434(3)$
Ru(3)-P(1)	$2.302(1)$	$\mathrm{Ru}(3)-\mathrm{C}(2)$	$2.165(3)$
Ru(4)-P(1)	2.242 (1)	$\mathrm{Ru}(4)-\mathrm{C}(1)$	$2.123(3)$
$\mathrm{Ru}(4)-\mathrm{P}(2)$	$2.249(1)$	$\mathrm{Ru}(5)-\mathrm{C}(1)$	$2.192(4)$
Ru(5)-P(2)	$2.367(1)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.301(5)$
Angles			
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(5)$	$90.45(1)$	$\mathrm{Ru}(4)-\mathrm{C}(1)-\mathrm{Ru}(5)$	85.7(2)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{Ru}(5)$	100.87(1)	$\mathrm{Ru}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	162.6(3)
$\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{Ru}(2)$	$85.8(2)$	$\mathrm{Ru}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	135.5(3)
$\mathrm{Ru}(2)-\mathrm{C}(2)-\mathrm{Ru}(3)$	85.9(1)	$\mathrm{Ru}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	138.7(3)
Dihedral angle $\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3) / \mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4) 32.58(4)^{\circ}$			
$\mathrm{Ru}-\mathrm{CO}$ range	16(6), av. 1.8		
$\mathrm{C}-\mathrm{O}$ range	53(8), av. 1.1		
$\mathrm{P}-\mathrm{C}(\mathrm{Ph}) \quad$ range	344(4), av. 1.8		
$\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ range	9.2(5), av. 177		

one CO and to two pyridine molecules $[\mathrm{Ru}(5)-\mathrm{N}(101,201) 2.211(3), 2.195(3) \AA$ A $]$. The latter distances are longer than those found in most N -donor complexes of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ [5], although $\mathrm{Ru}-\mathrm{N}$ bonds of $2.19 \AA$ have been observed in $\mathrm{Ru}_{3}(\mu$ $\mathrm{CO})_{2}(\mathrm{CO})_{8}($ bpy $)[6]$ and $\mathrm{Ru}_{3}(\mu$-napy $)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}[7]$.

Unlike $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)(\mathrm{CO})_{12}(8)$, for example, which contains a distorted octahedral $\mathrm{C}_{2} \mathrm{Ru}_{4}$ polyhedron, the central core in 5 forms a distorted capped trigonal bipyramid (or bicapped tetrahedron), of which a $\mathrm{C}-\mathrm{Ru}$ edge is bridged by $\mathrm{Ku}(5)$. The C_{2} ligand is attached to all five Ru atoms, in an asymmetric η^{2} mode to the two hinge atoms $[\mathrm{Ru}(1)-\mathrm{C}(1) 2.309(4), \mathrm{Ru}(1)-\mathrm{C}(2) 2.210(4), \mathrm{Ru}(3)-\mathrm{C}(1)$ $2.434(4), \mathrm{Ru}(3)-\mathrm{C}(2) 2.165(3) \AA$] and with $\mathrm{C}(2)$ being σ-bonded to $\mathrm{Ru}(2)[\mathrm{Ru}(2)-$ $C(2) 1.955(4) \AA]$ and $C(1)$ bridging the $R u(4)-R u(5)$ bond $[R u(4)-C(1) 2.123(4)$, $R u(5)-C(1) 2.192(4) \AA$]. Simple electron counting requires the C_{2} ligand to act as a 6e donor; individual Ru atoms have 18 e configurations, except for $\mathrm{Ru}(1)$, which has 19 and $\mathrm{Ru}(2)$ which has 17 . An alternative view takes account of the short $\mathrm{Ru}(2)-\mathrm{C}(2)$ and long $\mathrm{Ru}(3)-\mathrm{C}(1)$ interactions, formulating the C_{2} unit as a carbene as found in $\mathbf{4}$, for example.

A detailed consideration of the interaction of the C_{2} unit with the Ru_{5} cluster suggests an arrangement such as \mathbf{A}, similar to that proposed for the $\mathrm{C}_{2} \mathrm{Ph}$ ligand in $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mu_{4}-\mathrm{PPh}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}(9)$ [8], an isomer of 1 , and related to that considered for the amino-alkyne in $\mathrm{Os}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{HC}_{2} \mathrm{NEt}_{2}\right)(\mathrm{CO})_{9}$ (10) [9]. The $C(1)-C(2)$ separation of $1.301(5) \AA$ is consistent with a bond order between two and three; the short $\mathrm{Ru}(2)-\mathrm{C}(2)$ bond suggests a multiple bond, while $\mathrm{C}(2)$ is also relatively close to $R u(1)$ and $R u(3)$. In contrast, the $C(1)-R u(1)$ and $C(1)-R u(3)$
separations are much larger and this carbon is within normal σ-bonding distance of $\mathrm{Ru}(4)$ and $\mathrm{Ru}(5)\left[\mathrm{Ru}(4)-\mathrm{C}(1)-\mathrm{Ru}(5) 85.7(1)^{\circ}\right]$. The C_{2} moiety thus forms a dipolar ligand, being electron-rich at $C(2)$ and electron-poor at $C(1)$. A similar polarity has been suggested by EHMO calculations for the C_{2} ligand in 4 and is evidenced by the reactivity of this complex [10].

(8)

(9)

Table 2
Non-hydrogen atomic coordinates and equivalent isotropic thermal parameters for $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)(\mu$ $\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}(5)$

Atom	x	y	z	$U_{\mathrm{cq}}\left(\AA^{\circ}{ }^{2}\right)$
Ru(1)	0.79480(2)	0.66754(2)	0.60852(3)	$0.0336(2)$
$\mathrm{Ru}(2)$	$0.95664(2)$	${ }^{0.61238(2)}$	$0.75210(3)$	$0.0387(2)$
Ru(3)	$0.87461(2)$	$0.78800(2)$	$0.80440(3)$	$0.0302(1)$
Ru(4)	$0.68285(2)$	$0.77422(2)$	$0.72448(2)$	$0.0264(1)$
Ru(5)	$0.63354(2)$	$0.58400(2)$	$0.80580(2)$	$0.0268(1)$
C(11)	0.8687(3)	0.7306(4)	$0.5307(4)$	$0.063(3)$
O(11)	$0.9108(3)$	0.7680(4)	0.4818(4)	$0.109(3)$
C(12)	$0.7682(4)$	0.5349 (4)	0.5225(4)	0.066 (3)
$\mathrm{O}(12)$	0.7512(4)	0.4588(3)	$0.4672(4)$	$0.128(3)$
C(13)	$0.6868(3)$	$0.7107(3)$	$0.5168(4)$	0.049(2)
O(13)	0.6277(2)	0.7233(3)	$0.4418(3)$	$0.067(2)$
C(21)	1.0512(3)	$0.6621(4)$	$0.6932(4)$	$0.058(3)$
O(21)	1.1079(3)	0.6927(3)	$0.6592(4)$	$0.095(3)$
C(22)	1.0301(3)	0.5996 (3)	0.8963(5)	$0.058(3)$
O(22)	1.0712(3)	0.5923(3)	0.9846 (3)	0.089(2)
C(23)	0.9545(3)	0.4752(4)	$0.6887(5)$	0.061(3)
O(23)	0.9533(3)	0.3923(3)	$0.6530(4)$	$0.096(3)$
C(31)	0.9729(3)	0.8525 (3)	$0.7684(4)$	0.048(2)
O(31)	1.0324(2)	0.8952(2)	0.7474(3)	$0.068(2)$
C(32)	0.9242(3)	0.8214(3)	0.9602(4)	0.045(2)
O(32)	0.9568(2)	$0.8400(3)$	1.0539(3)	$0.077(2)$
C(41)	0.5845(3)	0.8336(3)	0.6411 (3)	0.037(2)
O(41)	0.5243(2)	0.8695(2)	0.5887(3)	$0.062(2)$
C(51)	0.5616(3)	0.5936(3)	$0.6614(4)$	$0.038(2)$
O(51)	$0.5129(2)$	$0.5888(2)$	$0.5745(2)$	0.056(2)
C(52)	0.5300 (3)	0.5268(3)	0.8410(4)	0.044(2)
O(52)	$0.4682(2)$	$0.4924(3)$	$0.8602(3)$	0.081(2)
$\mathrm{P}(1)$	$0.78038(7)$	$0.91516(7)$	$0.75996(8)$	0.0320(4)
C(111)	0.7967(3)	$0.9863(3)$	0.6488 (4)	0.041(2)
C(112)	0.7353(4)	0.9796 (3)	$0.5462(4)$	$0.062(3)$
C(113)	0.7501(5)	1.0366 (4)	$0.4651(4)$	$0.086(3)$
C(114)	0.8301(5)	$1.0970(5)$	0.4859(5)	0.089(4)
C(115)	0.8921(4)	1.1057(4)	0.5865(6)	0.081(4)
C(116)	0.8760(3)	$1.0512(4)$	0.6707(4)	0.061(3)
C(121)	0.7626 (3)	1.0232(3)	0.8537(3)	0.038(2)
C(122)	0.8321(3)	1.0730 (3)	$0.9399(4)$	0.057(2)
C(123)	0.8171(4)	$1.1577(4)$	1.0049(4)	0.072(3)
C(124)	$0.7352(5)$	1.1924(4)	$0.9862(5)$	0.074(3)
C(125)	0.6641(4)	1.1425(4)	$0.9014(5)$	0.075 (3)
C(126)	0.6782(3)	1.0587(3)	0.8348(4)	0.054(2)
$\mathrm{P}(2)$	$0.61151(6)$	$0.75631(7)$	$0.85678(8)$	0.0287(4)
C(211)	0.6563(2)	$0.7962(3)$	1.0060(3)	0.033(2)
C(212)	0.7341 (3)	0.8605(3)	1.0514(3)	0.041(2)
C(213)	0.7694 (3)	$0.8821(3)$	1.1662(4)	0.055(2)
C(214)	0.7279 (4)	0.8385(4)	1.2353(4)	$0.068(3)$
C(215)	0.6484(4)	$0.7762(4)$	1.1918(4)	0.071 (3)
C(216)	$0.6122(3)$	$0.7547(3)$	1.0774(4)	$0.051(2)$
C(221)	$0.4962(2)$	0.7932(3)	0.8308(3)	$0.035(2)$
C(222)	$0.4836(3)$	$0.8898(3)$	0.8754(4)	0.049(2)
C(223)	$0.3982(3)$	0.9242(4)	0.8517(4)	0.059(3)
C(224)	0.3246 (3)	0.8614(4)	$0.7849(4)$	$0.053(2)$

Table 2 (continued)

Atom	x	y	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)$
$\mathrm{C}(225)$	$0.3364(3)$	$0.7671(4)$	$0.7399(4)$	$0.051(2)$
$\mathrm{C}(226)$	$0.4214(3)$	$0.7323(3)$	$0.7616(4)$	$0.045(2)$
$\mathrm{C}(1)$	$0.7565(2)$	$0.6475(3)$	$0.7713(3)$	$0.028(2)$
$\mathrm{C}(2)$	$0.8385(2)$	$0.6242(3)$	$0.7791(3)$	$0.032(2)$
$\mathrm{N}(101)$	$0.6715(2)$	$0.4322(2)$	$0.7519(3)$	$0.036(2)$
$\mathrm{C}(102)$	$0.6104(3)$	$0.3667(3)$	$0.6756(4)$	$0.056(2)$
$\mathrm{C}(103)$	$0.6313(4)$	$0.2742(4)$	$0.6344(5)$	$0.081(3)$
$\mathrm{C}(104)$	$0.7164(4)$	$0.2461(4)$	$0.6720(5)$	$0.075(3)$
$\mathrm{C}(105)$	$0.7797(3)$	$0.3116(3)$	$0.7522(4)$	$0.056(2)$
$\mathrm{C}(106)$	$0.7542(3)$	$0.4036(3)$	$0.7898(4)$	$0.041(2)$
$\mathrm{N}(201)$	$0.7178(2)$	$0.5654(2)$	$0.9729(2)$	$0.032(1)$
$\mathrm{C}(202)$	$0.6948(3)$	$0.4911(3)$	$1.0291(4)$	$0.044(2)$
$\mathrm{C}(203)$	$0.7401(3)$	$0.4827(4)$	$1.1381(4)$	$0.057(3)$
$\mathrm{C}(204)$	$0.8127(3)$	$0.5514(4)$	$1.1932(4)$	$0.055(2)$
$\mathrm{C}(205)$	$0.8392(3)$	$0.6255(3)$	$1.1360(4)$	$0.049(2)$
$\mathrm{C}(206)$	$0.7913(3)$	$0.6297(3)$	$1.0275(3)$	$0.038(2)$

The formation of 5 can be followed by addition of two molecules of pyridine to the Ru_{5} cluster in $\mathbf{1}$, resulting in cleavage of an $\mathrm{Ru}-\mathrm{Ru}$ bond and displacement of two CO molecules. A concomitant transformation results in cleavage of the $\mathrm{P}-\mathrm{C}(s p)$ bond in 1 to give the second $\mu-\mathrm{PPh}_{2}$ group and the cluster-bound C_{2} fragment. The preparation of a cluster such as 5 , in which there are two easily displaceable ligands (py) provides another entry into the chemistry of cluster-bound C_{2}, which is currently being explored.

Experimental

General reaction conditions [11] and the synthesis of 1 [12] have been described elscwherc.

Reaction of $R u_{5}\left(\mu_{5}-C_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ with pyridine
A solution of complex $1(200 \mathrm{mg}, 0.158 \mathrm{mmol})$ in benzene (10 ml) containing pyridine (1 ml) was heated in a Carius tube at $90^{\circ} \mathrm{C}$ for 1.25 h . The solvent was removed and the residue purified by preparative TLC (petroleum ether/acetone 4:1). A brown band ($R_{\mathrm{f}} 0.25$) was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to yield black crystals of $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}(5)(71 \mathrm{mg}, 33 \%)$, m.p. $219-222^{\circ} \mathrm{C}$ (dec.). Anal. Found: C, 40.87; H, 2.36; N, 1.98\%; [M - 2py] ${ }^{+}$, 1209. $\mathrm{C}_{47} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Ru}_{5}$ calc.: $\mathrm{C}, 41.31 ; \mathrm{H}, 2.21 ; \mathrm{N}, 2.05 \% ; M, 1366 . \mathrm{R}: \nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2051s, 2033sh, 2026s, 1996vs, 1985vs, 1973sh, 1943m, 1913m cm ${ }^{-1}$. FAB MS $(m / z): 1208,[M-2 \mathrm{py}]^{+} ; 1180-900,[M-2 \mathrm{py}-n \mathrm{CO}]^{+}(n=1-11)$. The instability of this complex has so far precluded measurement of a ${ }^{13} \mathrm{C}$ NMR spectrum.

Crystallography

A unique data sct was measurcd at $c a .295 \mathrm{~K}$ within the limit $2 \theta_{\text {max }}=50^{\circ}$ using an Enraf-Nonius CAD4 diffractometer ($2 \theta / \theta$ scan mode; monochromatic Mo- K_{α}
radiation, $\lambda 0.7107_{3} \AA$); 8101 independent reflections were obtained, 6891 with $I>3 \sigma(I)$ being considered 'observed' and used in the full matrix least squares refinement following gaussian absorption correction, after solution of the structure by direct methods. Anisotropic thermal parameters were refined for the non-hydrogen atoms; $\left(x, y, z, U_{\text {iso }}\right)_{\mathrm{H}}$ were included constrained at estimated values (see Table 2). Conventional residuals R, R^{\prime} on $|F|$ are $0.025,0.029$, using a statistical weights derivative of $\sigma^{2}(I)=\sigma^{2}(I)_{\text {diff }}+0.0004 \sigma^{4}\left(I_{\text {diff }}\right)$. Computation used the xtal 3.0 program system [13] implemented by S.R. Hall; neutral atom complex scattering factors were employed.

Crystal and refinement data

$\mathrm{Ru}_{5}\left(\mathrm{C}_{2}\right)\left(\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2} \equiv \mathrm{C}_{47} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Ru}_{5}, M=1366.1$. Triclinic, space group P 린 $, \quad a=15.427(2), \quad b=13.1870(8), \quad c=12.547(3) ~ \AA, \quad \alpha=95.92(1), \quad \beta=$ $105.69(1), \gamma=93.635(7)^{\circ}, V=2433 \AA^{3}, Z=2, \rho_{\mathrm{c}}=1.86 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1328$. Crystal dimensions: $0.22 \times 0.15 \times 0.27 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=14.8 \mathrm{~cm}^{-1}, A^{\star}(\mathrm{min}, \max)$ $=1.17,1.32$ (Gaussian).

Acknowledgements

We thank the Australian Research Council for support and Johnson Matthey Technology Centre for a generous loan of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

References

1 Part LXXV: C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, J. Organomet. Chem., 423 (1992) 83.

2 M.I. Bruce, M.R. Snow, E.R.T. Tiekink and M.L. Williams, J. Chem. Soc., Chem. Commun., (1986) 701.

3 C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, J. Chem. Soc., Chem. Commun., in press.
4 C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, in preparation.
5 M.I. Bruce, M.P. Cifuentes and M.G. Humphrey, Polyhedron, 10 (1991) 277.
6 (a) T. Venäläinen, J. Pursiainen and T. Pakkanen, J. Chem. Soc., Chem. Commun., (1985) 1348; (b) M.I. Bruce, M.G. Humphrey, M.R. Snow, E.R.T. Tiekink and R.C. Wallis, J. Organomet. Chem., 314 (1986) 311.
7 J.A. Cabeza, L.A. Oro, A. Tiripicchio and M. Tiripicchio-Camellini, J. Chem. Soc., Dalton Trans., (1988) 1437.

8 C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, J. Organomet. Chem., 420 (1991) 87.
9 Z. Nomikou, J.-F. Halet, R. Hoffmann, J.I. Tanner and R.D. Adams, Organometallics, 9 (1990) 588.

10 C.J. Adams, M.I. Bruce, M.J. Liddell, B.W. Skelton and A.H. White, in preparation.
11 M.I. Bruce, M.J. Liddell, B.W. Skelton and A.H. White, Organometallics, 10 (1991) 3282.
12 M.I. Bruce, M.J. Liddell and E.R.T. Tiekink, J. Organomet. Chem., 391 (1990) 81.
13 S.R. Hall and J.M. Stewart (Eds.), xtal Users' Manual, Version 3.0, Universities of Western Australia and Maryland, 1990.

[^0]: * For Part LXXV see ref. 1.

